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Introduction

The weighted-Chebyshev method for the design of FIR filters is
an iterative multi-variable optimization method based on the
Remez Exchange Algorithm.

It can be used to design optimal FIR (nonrecursive) filters with
arbitrary amplitude responses.

Note: The material for this module is taken from Antoniou,
Digital Signal Processing: Signals, Systems, and Filters,
Chap. 15.
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Introduction — Historical Evolution

e Herrmann published a short paper in Electronics Letters in
May 1970 on the design of FIR filters.
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Introduction — Historical Evolution

e Herrmann published a short paper in Electronics Letters in
May 1970 on the design of FIR filters.

e This paper was followed by a series of papers by Parks,
McClellan, Rabiner, and Herrmann during the early
seventies.
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Introduction — Historical Evolution

e Herrmann published a short paper in Electronics Letters in
May 1970 on the design of FIR filters.

e This paper was followed by a series of papers by Parks,
McClellan, Rabiner, and Herrmann during the early
seventies.

e These developments led in 1975 to the well-known
McClellan-Parks-Rabiner computer program for the design
of FIR filters, which has found widespread applications.
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Introduction — Historical Evolution

e Herrmann published a short paper in Electronics Letters in
May 1970 on the design of FIR filters.

e This paper was followed by a series of papers by Parks,
McClellan, Rabiner, and Herrmann during the early
seventies.

e These developments led in 1975 to the well-known
McClellan-Parks-Rabiner computer program for the design
of FIR filters, which has found widespread applications.

e Enhancements to the weighted-Chebyshev method were
proposed by Antoniou during the early eighties.
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Problem Formulation

Consider an FIR filter characterized by the transfer function

N—1
H(z)=) hnT)z"
n=0
and assume that
e Nis odd,
e the impulse response is symmetrical, and
e the sampling frequency is ws = 2.
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Problem Formulation

The frequency response of the filter can be expressed as
H(e") = e°*Pe(w)

where

Ps(w) = ) axcos ke (A)
k=0

is the gain function and

ao = h(c)
ax =2h(c—k) for k=1,2,..., ¢
c=(N-1)/2

Note that P.(w) is the frequency response of a noncausal
version of the required filter.
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Error Function

e An error function E(w) can be constructed as
E(w) = W(0)[D(w) — Ps(w)]

where e~ D(w) is the idealized frequency response of the
desired filter, W (w) is a weighting function, and

(o}
P.(w) = Z ay cos kw
k=0
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Error Function

e An error function E(w) can be constructed as
E(w) = W(0)[D(w) — Ps(w)]

where e~ D(w) is the idealized frequency response of the
desired filter, W (w) is a weighting function, and

(o}
P.(w) = Z ay cos kw
k=0

e If |E(w)| is minimized such that
|E(w)| = [W(@)[D() — Pe(w)]| <8p for we 2  (B)

with respect a set of frequencies in the interval [0, 7], say
2, a filter can be obtained in which

|Eo(@)] = |D(@) — Pe()] < |W8€w)| forwee (O
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Lowpass Filters

e In the case of a lowpass filter, the minimization of |E (w)|
will force the inequality

|Eo(@)] = |D(@) — Pe(@)] < |W8€w)| forwea (O

where
1 for0<w=<wp

0 forwa<w<m

D(w) = [
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Lowpass Filters

e In the case of a lowpass filter, the minimization of |E (w)|
will force the inequality

|Eo(@)] = |D(@) — Pe(@)] < |W8€w)| forwea (O

where
1 for0<w<wp

0 forwa<w<m

D(w) = {

¢ In effect, a minimization algorithm will force the actual gain
function P.(w) to approach the ideal gain function D(w).
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Lowpass Filters conta
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Lowpass Filters contd

o If we choose the weighting function

1 for0O<w<w
W(w) = - =P
(@) {g—’a’ forw, <w<m

then from Eq. (C), i.e.,

8p
|Eo(w)| = |D(w) — Pe(w)| < W(w)| for w e Q (C)
we get
8p for0<w<wp

g forwa<w<m

|Eo(w)] = {
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e The most appropriate approach for the solution of the

optimization problem just described is to solve the minimax
problem

mini;nize {max |E (w)|}

where
x=[a a - al

Frame # 10 Slide # 15 A. Antoniou

Part 2: FIR Filters — Weighted-Chebyshev Method



e The most appropriate approach for the solution of the
optimization problem just described is to solve the minimax
problem

mini;nize {maf):\x |E(w)|}

where
x=[a a - al

e By virtue of the so-called alternation theorem, there is a
unique equiripple solution of the above minimax problem.
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Minimax Problem

e The most appropriate approach for the solution of the
optimization problem just described is to solve the minimax
problem

mini;nize {mgx |E(w)|}

where
x=[a a - al

e By virtue of the so-called alternation theorem, there is a
unique equiripple solution of the above minimax problem.

e Note that weighted-Chebyshev filters are so called
because they have an equiripple amplitude response just
like Chebyshev filters but are not related to Chebyshev
filters in any other way.
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Alternation Theorem

If P.(w) is a linear combination of r = ¢ + 1 cosine functions of
the form

Cc
Ps(w) = ) _ ay cos ko
k=0
then a necessary and sufficient condition that P.(w) be the
unique, best, weighted-Chebyshev approximation to a
continuous function D(w) on 2, where Q is a dense and
compact subset of the frequency interval [0, ], is that the
weighted error function E (w) exhibit at least r + 1 extremal
frequencies @; in © such that

c?)o<§)1<---<c?)r
E(®) = —E(®jy1) for i=0,1,...,r—1
and
|E(c?),~)|:mas;<|E(a))| for i=0,1,...,r
we
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e From the alternation theorem and Eq. (B), i.e.,
E(w) = W(0)[D(w) — Pe(w)] (B)
we can write
E(@) = W@)[D(@) — Po(@)] = (=1)'s

fori=0, 1, ..., r, where § is a constant.
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e From the alternation theorem and Eq. (B), i.e.,
E(w) = W(0)[D(w) — Pe(w)] (B)
we can write
E(@) = W(@)ID(@) — Po(@)] = (=1)'

fori=0, 1, ..., r, where § is a constant.
e The above system of equations can be put in matrix form as

. . . [ag] [ D(@o) |
1 Ccos@g COSGpy - - COSPy mr— .
0 0 0 W | | a D(&+)
1 Ccoswq COSwi --- COS®1 Wan )
N n N _1r D(o,—
1 CcosSd, COS&; --- COSD, Ijv(—l}r) E;C D(C(ch) )1)
- — — r —
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e If the extremal frequencies (or extremals for short) were
known, coefficients a, and, in turn, the frequency response
of the filter could be computed using Eq. (A), i.e.,

Ps(w) = ) _ ay cos ko (A)
k=0
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e If the extremal frequencies (or extremals for short) were
known, coefficients a, and, in turn, the frequency response
of the filter could be computed using Eq. (A), i.e.,

Ps(w) = ) _ ay cos ko (A)
k=0

e The solution of this system exists since the above
(r +1) x (r + 1) matrix is known to be nonsingular.
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e The Remez exchange algorithm is an iterative multivariable
algorithm that is naturally suited for the solution of the
minimax problem just described.

e It is based on the second optimization method of Remez.
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1. Initialize extremal frequencies &g, &1, ..., ®r and ensure
that an extremal is assigned at each band edge.
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1. Initialize extremal frequencies &g, &1, ..., ®r and ensure
that an extremal is assigned at each band edge.

2. Solve the system of equations to get § and the coefficients
dp, a1, ..., dg-
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1. Initialize extremal frequencies &g, &1, ..., ®r and ensure
that an extremal is assigned at each band edge.

2. Solve the system of equations to get § and the coefficients
dp, a1, ..., dg-

3. Using the coefficients ay, ay, ..., ac, calculate P.(w) and
the magnitude of the error

|E(w)| = [W(w)[D(w) — Pe(o)]]
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1. Initialize extremal frequencies &g, &1, ..., ®r and ensure
that an extremal is assigned at each band edge.

2. Solve the system of equations to get § and the coefficients
dp, a1, ..., dg-

3. Using the coefficients ay, ay, ..., ac, calculate P.(w) and
the magnitude of the error

|E(w)| = [W(w)[D(w) — Pe(o)]]

4. Locate the frequencies wg, w1, ..., o, at which |E(w)| is

maximum and |E (»;)| > § (these frequencies are potential
extremals for the next iteration).
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5. Compute the convergence parameter

_ max |E (w;)| — min |E (w))]

Q —
max |E (w))]

where i =0, 1, ..., p.
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5. Compute the convergence parameter

_ max |E (w;)| — min |E (w))]

Q —
max |E (w))]

where i =0, 1, ..., p.

6. Reject p — r superfluous potential extremals w; according
to an appropriate rejection criterion and renumber the
remaining w; by setting &; = w; fori =0, 1, ..., r.

Frame # 17 Slide # 30 A. Antoniou Part 2: FIR Filters — Weighted-Chebyshev Method



5. Compute the convergence parameter

a— max |E (w;)| — min |E (w))]

max | E (w))]
where i =0, 1, ..., p.

6. Reject p — r superfluous potential extremals w; according
to an appropriate rejection criterion and renumber the
remaining w; by setting &; = w; fori =0, 1, ..., r.

7. If Q > ¢, where ¢ is a convergence tolerance (say
¢ = 0.01), repeat from step 2; otherwise continue to step 8.
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Basic Remez Exchange Algorithm contd

5. Compute the convergence parameter

o- max |E (w;)| — min |E (w))]

max | E(w))|
where i =0, 1, ..., p.

6. Reject p — r superfluous potential extremals w; according
to an appropriate rejection criterion and renumber the
remaining w; by setting &; = w; fori =0, 1, ..., r.

7. If Q > ¢, where ¢ is a convergence tolerance (say
¢ = 0.01), repeat from step 2; otherwise continue to step 8.

8. Compute P.(w) using the last set of extremal frequencies;
then deduce h(n), the impulse response of the required
filter, and stop.
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Bands: 1
Extremals: r+1 (12)
Intervals: r (11)

| B
Lo

1 2 3 ‘ ‘ 12

W,=B/r
Bands: 2
Extremals: r+1 (13)
Intervals: r-1 (11)
| I I " L1 1 1 I
PR - 19
W=B/m, W,=B,/m,

Bands: 3
Extremals: r+1 (14)
Intervals: r-2 (11)
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For a filter with J bands with bandwidths By, Bs, ..., By, the
number of extremals and interval between extremals for each
band can be calculated by using the following formulas:

J
1
Wo=——5'B

0 r+1—Jl_§1’

B:
m; = <Wfo+o.5> for j=1,2, ..., J—1
J—1
and my=r—> (m+1)
j=1

B;
W= forj=1,2,...,J
m;

where r = (N + 1)/2 and N is the filter length.
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e In each iteration, the extremals need to be updated. This is
done by finding the maxima of the error function

|E(w)| = [W(w)[D(®) — Pe(o)]]
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e In each iteration, the extremals need to be updated. This is
done by finding the maxima of the error function

|E(w)| = [W(@)[D(w) — Pe(w)]]
e This could be done by solving the system

2 2 A [a0| [ D@o) ]
1 cosdy COS@y --- COS® 1 ©
y . 0 WG | | ay D(a1)
1 coswy COSwi -+ COSOI fas '
A A A —_1\r -
1 COSw, COSw, --- COS, lgll(l)),) 20 DD(C(()é»)_;)
L ¢ | r) |

for the coefficients a, and then calculating

(o]
P.(w) = Z ay cos kw
k=0

andin turn E(w).
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e This approach is inefficient and may be subject to

numerical ill-conditioning, in particular if § is small and N is
large.

Note: A 50 x 50 matrix is quite typical.

Frame # 21 Slide # 37 A. Antoniou

Part 2: FIR Filters — Weighted-Chebyshev Method



e An alternative and more efficient approach is to deduce §
analytically (by using Cramer’s rule) and then interpolate
P.(w) on the r frequency points using the barycentric form
of the Lagrange interpolation formula, as follows:
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e An alternative and more efficient approach is to deduce §
analytically (by using Cramer’s rule) and then interpolate
P.(w) on the r frequency points using the barycentric form
of the Lagrange interpolation formula, as follows:

e Calculate parameter § as

Z axD(wk)

Zk o (= 1) o
W(w)
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e With § known, P,(w) can be obtained as

Ck fOI‘C()ZC?)o, 651,...,6?),»_1
r—1
Bk Ck
Pe(w) = {50 X =X
’r‘__?— otherwise
>
X — X
k=0 k

r 1

where ok =[lji_o ik 55> Pk = [ =0, ik xk Xi
and Gk = D(@x) — (=) e

with x=cosw and x;=cosw;, for i=0, 1,
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e The problem formulation is such that there must be exactly
r + 1 extremals in each iteration.
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e The problem formulation is such that there must be exactly
r + 1 extremals in each iteration.

e Analysis will show that |E(w)| can have as many as
r +2J — 1 maxima where J is the number of bands.

If in any iteration the number of maxima exceeds r + 1,
then the iteration is said to have generated superfluous
potential extremals.
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e In the standard McClellan, Rabiner, and Parks algorithm,
this difficulty is circumvented by rejecting the p — r
potential extremals w; that yield the lowest error | E (w)|.
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e The impulse response in Step 8 of the algorithm can be
determined by recalling that function P.(w) is the frequency
response of a noncausal version of the required filter.

Frame # 26 Slide # 44 A. Antoniou Part 2: FIR Filters — Weighted-Chebyshev Method



e The impulse response in Step 8 of the algorithm can be
determined by recalling that function P.(w) is the frequency
response of a noncausal version of the required filter.

e The impulse response of the noncausal filter, denoted as
ho(n) for —c < n < ¢, can be determined by computing
P.(k2) fork =0, 1, ..., c where Q@ =27 /N, and then
using the inverse discrete Fourier transform.
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e It can be shown that

fo(n) = fo(=n) = 1N {PC(O) + ) 2P (k) cos <2’;V "”)}
k=1

forn=0,1, ..., c.
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e It can be shown that

1 ° 27 kn
ho(n) = ho(—n) = N {PC(O) + kXZ;ZPc(kQ) COS< N )}
forn=0,1, ..., c.

e The impulse response of the required causal filter is given
by
h(n) = hg(n — ¢)

forn=0,1, ..., c.
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| Band | D(w) | W(w) | Left band edge | Right band edge |

1 1 1 0 1.0

2 0 0.4 1.25 T
Sampling frequency: 2
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Function Evals: 0

Filter length: 27
Iteration no: 1

Error at Sample Points

[E(@)]

Frequency, radls

A. Antonio Weighted-Chebyshev Method
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Filter length: 27 Function Evals: 199
Iteration no: 2

Error at Sample Points

Frequency, radis
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Selective Step-by-Step Search

e When the system of equations

A A A agp [ D(&o) ]
1 Cosdy COSdg -+ COSDy e v
y " L0 Mo | | a D(a1)
1 coswy coswy -+ COSw1 v 0 '
. . o .
1 COSw, COS®, --- COS®, ISV(B,) aac DD(C:GI)_;)
L ¢ | r) |

is solved, the error function |E ()| is forced to satisfy the
relation

|E(@p] = IW(@)[D(@i) — Pe(@)]] = |3]
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Selective Step-by-Step Search

e When the system of equations

1 cosdp cosdg - cosde wi—T1|% D(ao)
o Coson © W | lan| | D@
1 coswy COswy -+ COSwi 0 '
. . o .
1 COoS®, COS®, --- COSw, ISV 1&3),) aac DD(Cé)I_;)
L 9 L wr) |

is solved, the error function |E ()| is forced to satisfy the
relation

|E(@p] = IW(@)[D(@i) — Pe(@)]] = |3]

e This relation can be satisfied in a number of ways but the
most likely possibility for the jth band is illustrated in the
next slide where w;; and wg; are the left-hand and
right-hand edges, respectively.
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Selective Step-by-Step Search conta

|E(w)|

Q
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Selective Step-by-Step Search conta

Because of the special nature of the error function

(a) the maxima of |E(w)| can be easily found by searching in
the vicinity of the extremals;

(b) gradient information can be used to expedite the search for
the maxima of |E (w)|; and

(c) the closer we get to the solution, the closer are the maxima
of the error function to the extremals.

By using a selective step-by-step search, a large amount of
computation can be eliminated.
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Selective Step-by-Step Search conta

Extra ripples can arise in the first and last bands.:

|Ew)]

[l

lj Wyj Wip—1)7 w

(b) (©)

@y @y
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Selective Step-by-Step Search conta

Also in interior bands:

|E@)|

(9]

T

wij Waj Wsj

-

C=1j Y

(@)
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Cubic Interpolation Search

e Increased computational efficiency can be achieved by
using a search based on cubic interpolation.

Frame # 40 Slide # 61 A. Antoniou Part 2: FIR Filters — Weighted-Chebyshev Method



Cubic Interpolation Search

e Increased computational efficiency can be achieved by
using a search based on cubic interpolation.

e Assuming that the error function shown in the figure can be
represented by the third-order polynomial

|IE(w)] = M = a+ bw + co?® + do®
where a, b, ¢, and d are constants then

am
—— =G=b+2cw+ 3dw?
dw
Hence, the frequencies at which M has stationary points

are given by

& = 31—d [—c +./(c2— 3bd)]
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Cubic Interpolation Search

e Increased computational efficiency can be achieved by
using a search based on cubic interpolation.

e Assuming that the error function shown in the figure can be
represented by the third-order polynomial

|E(w)] = M = a+ bw + cw® + do®

where a, b, ¢, and d are constants then

ﬂ:G:b—l—ZCa)—l-Sda)z
dw

Hence, the frequencies at which M has stationary points
are given by
1
= _ 2 _
w_Sd[ c+V(c 3bd)]
e Therefore, |E(w)| has a maximum if
d’m c

e =2c+6dw <0 or a)<—ﬁ
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Cubic Interpolation Search contd

|E(W)|
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Cubic Interpolation Search contd

e The cubic interpolation method requires four function
evaluations per potential extremal consistently.
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Cubic Interpolation Search contd

e The cubic interpolation method requires four function
evaluations per potential extremal consistently.

e The selective step-by-step search may require as many as
8 function evaluations per potential extremal in the first two
or three iterations but as the solution is approached only
two or three function evaluations are required.
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Cubic Interpolation Search contd

e The cubic interpolation method requires four function
evaluations per potential extremal consistently.

e The selective step-by-step search may require as many as
8 function evaluations per potential extremal in the first two
or three iterations but as the solution is approached only
two or three function evaluations are required.

e By using the cubic interpolation to start with and then
switching over to the step-by-step search, an very efficient
algorithm can be constructed.
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Cubic Interpolation Search contd

e The cubic interpolation method requires four function
evaluations per potential extremal consistently.

e The selective step-by-step search may require as many as
8 function evaluations per potential extremal in the first two
or three iterations but as the solution is approached only
two or three function evaluations are required.

e By using the cubic interpolation to start with and then
switching over to the step-by-step search, an very efficient
algorithm can be constructed.

e The decision to switch from cubic to selective can be based
on the value of the convergence parameter Q (see Step 5).

Switching from the cubic to the selective when Q is
reduced below 0.65 works well.
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Improved Rejection Scheme for Superfluous

Potential Extremals

e If an extremal does not move from one iteration to the next,
then the minimum value of E(w)) is simply &, as can be
easily shown, and this happens quite often even in the first
or second iteration of the Remez algorithm.
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Improved Rejection Scheme for Superfluous

Potential Extremals

e If an extremal does not move from one iteration to the next,
then the minimum value of E(w)) is simply &, as can be
easily shown, and this happens quite often even in the first
or second iteration of the Remez algorithm.

e As a consequence, rejecting potential extremals on the
basis of the individual values of E(w,) tends to become
random and this can slow the Remez algorithm quite
significantly particularly for multiband filters.
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Improved Rejection Scheme for Superfluous

Potential Extremals

e If an extremal does not move from one iteration to the next,
then the minimum value of E(w)) is simply &, as can be
easily shown, and this happens quite often even in the first
or second iteration of the Remez algorithm.

e As a consequence, rejecting potential extremals on the
basis of the individual values of E(w,) tends to become
random and this can slow the Remez algorithm quite
significantly particularly for multiband filters.

e An improved scheme for the rejection of superfluous
extremals based the rejection on the lowest average band
error as well as the individual values of E (;) is described
in the next transparency.
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Improved Rejection Scheme conta

e Compute the average band errors

1 ~
Ei=— E(wy)| for j=1,2, ...
) V,AZ' (@) for j=1,2,....J
W;e;
where Q; is the set of extremals in band j given by

Qj = {0 < wj < wgj}

v; is the number of potential extremals in band j, and J is
the number of bands.
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Improved Rejection Scheme conta

e Compute the average band errors

1 ~
E =— E(wp)| for j=1,2, ...
) U,AZ'“”')' orj=1,2,....J
W;e;

where Q; is the set of extremals in band j given by
Q= {Z)i o < wi < wpj}
v; is the number of potential extremals in band j, and J is

the number of bands.

e Rank the J bands in the order of lowest average error and
let 4, b, ..., I, be the ranked list obtained, i.e., /; and [,
are the bands with the lowest and highest average error,
respectively.

Frame # 44 Slide # 73 A. Antoniou Part 2: FIR Filters — Weighted-Chebyshev Method



Improved Rejection Scheme conta

e Rejectone w;ineachofbands iy, b, ..., L1, h, b, ...
until p — r superfluous w; are rejected.
In each case, reject the wj, other than a band edge, that
yields the lowest |E (»;)| in the band.

Example:

If J =3, p — r =3, and the average errors for bands 1, 2, and 3
are 0.05, 0.08, and 0.02, then 5,- are rejected in bands 3, 1, and
3.

Note: The potential extremals are not rejected in band 2 which
is the band of highest average error.
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| Band | D(w) | W(w) | Left band edge | Right band edge |

1 1 1 0 1.0

2 0 0.4 1.25 T
Sampling frequency: 2
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Filter length: 27
Iteration no: 1

Error at Sample Points

Function Evals: O

()]

LA
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Function Evals: §7

Filter length: 27
Iteration na: 2

Error at Sample Points

________________________________________________________

[E(@)]

Frequency, radis
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Filter length: 27 Function Evals: 134
Iteration no: 3

Error at Sample Points

[E(@)|

Frequency, radis

Weighted-Chebyshev Met
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Function Evals: 171

Filter length: 27
Iteration na: 4

Error at Sample Points

[E(@)]

Frequency, radis

Weighted-Chebyshev M
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Filter length: 27 Function Evals: 208
Iteration no: 5

Error at Sample Points

Frequency, radis




Filter length: 27 Function Evals: 2860
Iteration no: 8

Error at Sample Points

Frequency, radis
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Filter length: 27 Function Evals: 278
Iteration na: 7
Error at Sample Points

[E(@)]

Frequency, radis

ebyshev Method
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Comparisons — Amount of Computation

Type of No. of Range | Ave. Funct. Evals. Saving, %
Filter | Examples | of N A | B] C [CvB|CVA
LP 45 9-101 | 2691 | 722 | 372 | 489 | 86.3
HP 42 9-101 | 2774 | 710 | 356 | 499 | 87.2
BP 44 21-89 | 2777 | 667 | 338 | 49.3 | 87.8
BS 35 21-91 | 2720 | 639 | 336 | 474 | 87.6

A: Exhaustive search
B: Selective search
C: Selective plus cubic search
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Comparisons — Robustness

Type of No. of No. Failures
Filter | Examples | A[B| C
LP 46 110 O
HP 43 110 O
BP 50 3|2 5
BS 45 68| 8

A: Exhaustive search
B: Selective search
C: Selective plus cubic search
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e Given afilter length N, a set of passband and stopband
edges, and a ratio §,/35, an FIR filter with approximately
piecewise-constant amplitude-response specifications can
be readily designed.
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e Given afilter length N, a set of passband and stopband
edges, and a ratio §,/35, an FIR filter with approximately
piecewise-constant amplitude-response specifications can
be readily designed.

e While the filter obtained will have passband and stopband
edges at the correct locations and the ratio 5,/5, will be
exactly as required, the amplitudes of the passband and
stopband ripples are highly unlikely to have the specified
values.
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e Given afilter length N, a set of passband and stopband
edges, and a ratio §,/35, an FIR filter with approximately
piecewise-constant amplitude-response specifications can
be readily designed.

e While the filter obtained will have passband and stopband
edges at the correct locations and the ratio 5,/5, will be
exactly as required, the amplitudes of the passband and
stopband ripples are highly unlikely to have the specified
values.

e An acceptable design can be obtained by predicting the
value of N on the basis of the required specifications and
then designing filters for increasing or decreasing values of
N until the lowest value of N that satisfies the
specifications is found.
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e A reasonably accurate empirical formula for the prediction
of the required filter length, N, for the case of lowpass and
highpass filters, due to Herrmann, Rabiner, and Chan, is

(D - FB?)

N =int
[0~

+15]

where

B = |wag — wpl|/27

D = [0.005309(I0g,, 85)? + 0.07114 109, 8, — 0.4761]10g4, 82
—[0.00266(10g;4 85)2 + 0.5941 109, 8, + 0.4278]

F = 0.51244(log,, 8, — l0g;0 82) + 11.012
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e The formula of Herrmann et al. can also be used to predict
the filter length in the design of bandpass, bandstop, and
multiband filters in general.
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e The formula of Herrmann et al. can also be used to predict
the filter length in the design of bandpass, bandstop, and
multiband filters in general.

e Inthese filters, a value of N is computed for each transition
band between a passband and stopband or a stopband
and passband and the largest value of N so obtained is
taken to be the predicted filter length.
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1. Compute N using the prediction formula of Herrmann et
al.;if Niseven,set N =N + 1.
2. Design a filter of length N using the Remez algorithm and
determine the minimum value of §, say 4.
(A) If § > 5, then do:
(a) Set N = N + 2, design a filter of length N using the Remez
algorithm, and find §;
(b) If 6 < ép, then go to step 3; else, go to step 2(A)(a).
(B) If § < 8p, then do:
(a) Set N = N — 2, design a filter of length N using the Remez
algorithm, and find §;
(b) If 6 > 8p, then go to step 4; else, go to step 2(B)(a).

Frame # 59 Slide # 91 A. Antoniou Part 2: FIR Filters — Weighted-Chebyshev Method



3. If part A of the algorithm was executed, use the last set of
extremals and the corresponding value of N to obtain the
impulse response of the required filter and stop.

4. If part B of the algorithm was executed, use the last but

one set of extremals and the corresponding value of N to
obtain the impulse response of the required filter and stop.
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In an application, an FIR equiripple bandstop filter is required
which should satisfy the following specifications:

Od(d filter length

Maximum passband ripple A,: 0.5 dB
Minimum stopband attenuation A;: 50.0 dB
Lower passband edge wp1: 0.8 rad/s
Upper passband edge wpp: 2.2 rad/s
Lower stopband edge w,1: 1.2 rad/s

Upper stopband edge w4o: 1.8 rad/s

Sampling frequency ws: 27 rad/s

Design the lowest-order filter that will satisfy the specifications.
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The design algorithm gave a filter with the following
specifications:

e Passband ripple: 0.4342 dB

e Minimum stopband attenuation: 51.23 dB

Progress of Algorithm
\ N \ Iters. \ FE’s \ Ap, dB \ A, dB \
31 10 582 | 0.5055 | 49.91

33 7 376 | 0.5037 | 49.94
35 9 545 | 0.4342 | 51.23
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Gain, dB

/
>
>

=
<

-30.0
-55.0
_80‘0kllllllllllllllllllllllllllllllllllllll
0 0.785 1571 2356 3.142
w, rad/s

Note: Passband errors multiplied by a factor of 40.
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A DSP software package that incorporates the design
techniques described in this presentation is D-Filter. Please see

http://www.d-filter.ece.uvic.ca

for more information.
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e Three design techniques that bring about substantial
improvements in the efficiency of the Remez algorithm
have been described:

— A step-by-step exhaustive search
— A cubic interpolation search

— An improved scheme for the rejection of superfluous
potential extremals
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e Three design techniques that bring about substantial
improvements in the efficiency of the Remez algorithm
have been described:

— A step-by-step exhaustive search
— A cubic interpolation search

— An improved scheme for the rejection of superfluous
potential extremals

e These techniques are implemented in a DSP software
package known as D-Filter.
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e Three design techniques that bring about substantial
improvements in the efficiency of the Remez algorithm
have been described:

— A step-by-step exhaustive search
— A cubic interpolation search

— An improved scheme for the rejection of superfluous
potential extremals

e These techniques are implemented in a DSP software
package known as D-Filter.

e Extensive experimentation has shown that the selective
and cubic interpolation searches reduce the amount of
computation required by the Remez algorithm by almost
90% without degrading its robustness.
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Summary contd

e The rejection scheme described increases the efficiency
and robustness of the Remez algorithm further but the
scheme has not been compared with the original method
of McClellan, Rabiner, and Parks.
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Summary contd

e The rejection scheme described increases the efficiency
and robustness of the Remez algorithm further but the
scheme has not been compared with the original method
of McClellan, Rabiner, and Parks.

e By using a prediction technique for the required filter length
proposed by Herrmann, Rabiner, and Chan, filters that
satisfy prescribed specifications can be designed.
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Summary contd

e The rejection scheme described increases the efficiency
and robustness of the Remez algorithm further but the
scheme has not been compared with the original method
of McClellan, Rabiner, and Parks.

e By using a prediction technique for the required filter length
proposed by Herrmann, Rabiner, and Chan, filters that
satisfy prescribed specifications can be designed.

e For off-line applications, the Remez algorithm continues to
be the method of choice for the design of linear-phase
filters, multiband filters, differentiators, Hilbert transformers.
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Summary contd

e Despite the improvements described, the Remez algorithm
continues to require a large amount of computation.

For applications that need the filter to be designed on-line
in real or quasi-real time, the window method is preferred
although the filters obtained are suboptimal.
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This slide concludes the presentation.
Thank you for your attention.
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